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A method for calculating a compressible turbulent flow in a short vortex chamber that incorporates calcula-
tions of the boundary layer at the end walls by the integral method and of the discharge by the theory of an
ideal atomizer has been proposed. The magnitudes of pressure and circulation on the radius of the outlet ori-
fice of the chamber, obtained in determining the boundary layer, have been used as input parameters in cal-
culating the discharge, and the gas process has been regarded as isothermal. Favorable agreement between
the calculated results and the experimental data has been found.

Consideration is given to a short vortex chamber (Fig. 1) comprising a lateral cylindrical generatrix 1 bounded
by flat end walls 2 and 3, with the generatrix radius being larger than the distance between the end walls. On the lat-
eral generatrix, guiding apparatus 4 (blades, slots, orifices, etc.) is located for injecting a gas and imparting the circum-
ferential component of motion to it. In the center of one or both end covers, orifices 5 are made for gas escape. A
short vortex chamber is the basic element of vortex valves, atomizers and sprayers, vortex mills, and reactors.

The flow in vortex chambers used in engineering is generally turbulent. The range of characteristic Reynolds
numbers, based on the velocity in the slots of the guiding apparatus and the half-height of the chamber, is 104–105.

Methods for calculating the flow of an incompressible liquid in a short vortex chamber have been proposed
in [1–3]. There is a semi-empirical method for calculating the flow of a compressible liquid in a vortex chamber [3].
It is characterized by an accuracy of 20–30% and has been developed mostly for long chambers.

Since the experimental modeling of vortex chambers encounters certain difficulties of scaling, the develop-
ment of a method for calculating the flow in chambers with account for compressibility seems useful for engineer-
ing applications.

Description of the Flow Model. According to data of the visualization in a short vortex chamber, the radial
gas flow is confined to boundary layers along the end walls, and the chamber is mainly occupied by a vortex, in
which the level of radial velocities is low [1, 2].

A gas in the form of a narrow annular jet issues from the chamber through an orifice. Let us divide the
steady axisymmetric turbulent gas flow into three regions a, b, and c with respect to the chamber radius (Fig. 1). The
region of the developing flow (a) extends from the guiding apparatus r = r1 to a certain radius r = r∗, which needs
to be calculated. As a result of flows in the axial direction, the radial flow is localized in the end boundary layers,
such that starting with r∗ the radial velocity outside the boundary layer is absent. The region of the developed flow
(b) stretches from r = r∗ to the radius of the outlet orifice r2. The boundary layer and the vortex interact without
transferring mass. The developing and developed flows are assumed to be symmetric to the midsection of the chamber.
The discharge region (c) occupies the space from r = r2 to r = rv < r2, where rv is determined by calculation. The
radial velocity of gas is absent, and the axial and circumferential velocities are significant.

Let the axial coordinate on the end wall of the chamber be y = 0 (Fig. 1). The continuity equation

∂ (ρru)
∂y

 + 
∂ (ρrw)

∂r
 = 0 (1)
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and the momentum equations for the boundary layer
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with boundary conditions

y = 0 ,   u = 0 ,   v = 0 ,   w = 0 ;   y = h ⁄ 2 ,   w = 0 ,   ∂u ⁄ ∂y = 0 ,   ∂v ⁄ ∂y = 0 ;

r = r1 ,   u = − u0 ,   v = v0 ,   w = 0 ,   p = p0 ,   ρ = ρ0 (4)

and with the equation of state of a gas

p + pa

ρ
 = 

p0 + pa

ρ0
(5)

(pa is the pressure at the chamber outlet) are sufficient for describing the gas motion at known τ in the regions of the
developing and developed flows. Turbulence effects are allowed for by introducing shear stresses τ and characteristic
velocity profiles. The transfer processes linked with density pulsations are not examined. The adopted assumption of
isothermality of the gas process described by Eq. (5) can be qualitatively explained by the fact that the pressure drop
mainly sustains the rotational motion in the chamber without leading to a noticeable flow acceleration and temperature
decrease and the Mach number is smaller than unity.

We will solve problem (1)–(5) using the integral method of the boundary-layer theory. Let the boundary-layer
thickness be δ = δ(r). We specify the velocity profile [1]

0 < y ≤ δ   u = − u0 (U (r) f (η) + Us (r) g (η)) ,   v = vδ (r) f (η) ;

δ < y ≤ h ⁄ 2   uδ = − u0U (r) ,   v = vδ (r) ;   η = y ⁄ δ (6)

and introduce the numbers

α1 = ∫ 

0

1

dηf
 2

 ,   α2 = ∫ 

0

1

dηfg ,   α3 = ∫ 

0

1

dηg
2
 ,   α4 = ∫ 

0

1

dηg ,   α5 = ∫ 

0

1

dηf . (7)

Fig. 1. Diagram of the vortex chamber and flow: 1) generatrix, 2 and 3) lower
and upper end walls, 4) guiding apparatus, 5) orifices for gas escape; flow re-
gions: a) developing flow; b) developed flow; c) discharge.
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The functions f and g are assumed on the basis of experimental data, the quantities uδ, us, and vδ are determined from
the solution of the system of equations; us = u0Us represents the secondary radial flow inside the boundary layer origi-
nating due to the pressure drop not compensated by the rotation.

Integrating Eq. (1) over the half-height of the chamber with allowance for expressions (4), (6), and (7), we
obtain

  ∫ 
0

h ⁄ 2

 dy 
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or, changing the differentiation variable r → x and introducing the designation δ_ = 2δ ⁄ h, we get

δ_′ (α5U + α4Us − U) + U ′ (1 − δ_ − α5δ_) + Us
 ′(α4δ_) = 



1
1 − x

 − 
ρ′

ρ



(α5Uδ_ + α4Usδ_ − Uδ_ + U)  . (8)

From expressions (1) and (4) we obtain the integral w = − 
1
ρ

 ∫ 
0

y
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 . We next multiply Eq. (1) by u

and add it to expression (2) multiplied by rρ. Further on, we integrate the sum over the boundary-layer thickness with
allowance for conditions (4), (6), and (7) and for the expression for w. Converting to dimensionless variables, we find
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2
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where λ = v0
 ⁄ u0, Γ__ = vδr/(v0r1), ρ__ = ρ ⁄ ρ0, and p_ = p/(ρ0u0

2).
Outside the boundary layer, Eq. (2) simplifies and in dimensionless variables gives

− UU ′ − 
λ2Γ2

(1 − x)3 = 
1

ρ
 p
−
′ ; (10)

the same expression can be derived from Eq. (9), setting τr = Us′ = Us = 0 and α1 = α5 = 1.
After multiplying Eq. (1) by v and adding it to expression (3) multiplied by rρ, we integrate the sum over

the boundary-layer thickness with allowance for conditions (4), (6), and (7), and for the expression for w. Converting
to dimensionless variables, we determine

δ_′ (α1U + α2Us − α5U − α4Us) + U ′ (α1δ_ − α5δ_) +

+ Us
 ′ (α2δ_ − α4δ_) = − 

δ (α1U + α2Us)

Γ__
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 δ_ (α1U + α2Us − α5U − α4Us) . (11)
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Outside the boundary layer, Eq. (3) simplifies and in dimensionless variables gives

UΓ__ ′ = 0 . (12)

Equation (5) in dimensionless form becomes

ρ
−
 = 

p
−
 + p

−a

p
−0 + p

−a
 . (13)

The boundary of the region of the developed flow x∗ = 1 − r∗ ⁄ r1 is determined from the condition

U (x∗) = 0 . (14)

After solving the system of equations (8)–(14) it is possible to calculate the Bernoulli constant H and the di-
mensional circulation Γ at r = r2:

H = 




p

ρ
 + 

α1vδ
2

2



r=r2

 , (15)

Γ = (α5vδr)r=r2
 . (16)

In the discharge region there are no solid walls and wall friction. We assume that pressure drops are so in-
significant that the gas compressibility can be disregarded. Then, in the discharge region the circulation and total pres-
sure are retained, and the centrifugal force is offset by the pressure gradient

H = 
p
ρ

 + 
v

2
 + w

2

2
 , (17)

Γ = vr , (18)

dp
dr

 = 
ρv

2

r
 . (19)

Expressions (17)–(19) imply that w = const, and the volumetric rate of flow of a liquid through the chamber is Q =

π r2
2 − rv

2
 w.

Let rv = ξr2, ξ < 1. Using the condition of the maximum flow rate [2]

∂H

∂ξ
 = 0 , (20)

we obtain a closed system of equations (15)–(20), which describes the flow in the discharge region. Transformed into
dimensionless form, expressions (15)–(20) take the form

N = 
1

ξ2 + 
Λ2

(1 − ξ2)2
 , (21)

Λ2
 = 

(1 − ξ2)3

2ξ4  , (22)
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where N = 2r2
2H ⁄ Γ2 and Λ = Q/(πr2Γ) are dimensionless parameters. To describe the flow in the chamber, we choose,

as in [1], the Blasius law of resistance, the velocity profile "1/7", and the initial values

Cf = 0.0225 (2ν ⁄ hu0)1 ⁄ 4 ,   τ ⁄ ρV
2
 = 0.0225 (ν ⁄ δV)1 ⁄ 4 ,   τr = τ (u ⁄ V) ,   τt = τ (v ⁄ V) ,   V2

 = v
2
 + u

2
 ;

f = (η)1 ⁄ 7 ,   g = 1.69 (1 − η)2
 (η)1 ⁄ 7 ;

α1 = 0.778 ,   α2 = 0.350 ,   α3 = 0.313 ,   α4 = 0.439 ,   α5 = 0.875 ;

at   x = 0.0005   Us = 0.686λx
1 ⁄ 2 ,

δ_ = 
36.2Cf r1x

1 ⁄ 2

hλ1 ⁄ 4
 ,   U = 

1 + 0.439δ_Us

1 − 0.115δ_
 .

The algorithm for calculating the rate of flow of a liquid through the chamber for a given pressure drop in-
cludes the specification of an approximate value of the flow rate Q1, the calculation of the boundary layer in the
chamber using Eqs. (8)–(14), the computation of the parameters N and Λ, and the finding of the flow rate Q2 from
relations (21) and (22). If Q1 and Q2 are dissimilar, the value of Q1 is corrected and the calculation is repeated from
the beginning. As soon as the coincidence of these values to an assigned accuracy is attained, the calculation is com-
pleted. Further on, it is possible to calculate the flow parameters of interest at any point of the chamber. If there are
two outlets (in the upper and lower end covers), the calculation is carried out for the flow rate Q/2.

At fairly small radii of the orifices for gas escape from the chamber and high pressures at the inlet to the
device, the values of the circumferential velocity inside the vortex chamber may reach a supersonic level. Generally,
restricted supersonic flows change direction in a series of shock waves and rarefaction waves. However, the flow visu-
alization in the chamber has not shown shock waves [4]. Since the flow is confined to the end boundary layer, in the
current calculation it was assumed that a supersonic flow changes to subsonic in the isobaric hydraulic jump where the
boundary layer thickness is increased by the jump and the velocity is decreased (Mach numbers are of the order of
0.99–1.01) such that the continuity equation is fulfilled. This does not contradict the visualization data and the laws of
conservation, and it improves the calculation accuracy.

Comparison of Calculated Results and Experimental Data. We have obtained experimentally the flow rate
characteristic of the vortex chamber with a single outlet and dimensions r1 = 0.04 m, r2 = 0.01 m, and h = 0.016 m,
and a single tangential rectangular inlet with the cross section measuring 0.002 × 0.16 m. The chamber was blown
through by compressed air, the air temperature in the receiver being 18oC. During the experiments, we measured the
pressure on the radius r1 at a corresponding rate of flow of air through the chamber. The pressure was determined by
spring manometers of 0.6 accuracy rating with a measuring range of 0–0.25 MPa for low flow rates and 0–0.6 MPa
for high flow rates. The chamber was placed in a high-capacity bunker connected to a damping section. As the latter,
use was made of a straight channel with a diameter of 0.02 m for low flow rates and of 0.032 m for high flow rates,
with a length of 46 and 32 calibers, respectively. At the inlet to the channels, flow-deswirling plates, each measuring
three calibers, were installed. The flow rate was calculated from the maximum air velocity measured on the axis of
the damping section by a Pitot–Prandtl tube. The pressure drop along the tube was measured with an accuracy of
0.001 m based on the difference in water levels in the arms of a U-shaped manometer. The air temperature was meas-
ured by a TK-5.03 thermometer (TEKHNOAS, Russia) with an attachment for determining the gas temperature with
an accuracy of up to 1oC.

Figure 2 shows the rate of flow of air as a function of pressure at the inlet to the chamber. The results cal-
culated with account for the hydraulic jump are in favorable agreement with the experimental data at excess pressures
of at least up to 0.4–0.5 MPa, and with the hydraulic jump disregarded, at excess pressures of 0.3–0.4 MPa.

In [5], close consideration has been given to an air flow (20oC) in a chamber with a single outlet at r1 =
0.142 m, r2 = 0.0254 m, h = 0.032 m, v0 = 26.4 m/sec, and u0 = 2.64 m/sec; the guiding apparatus consisted of 48
blades located uniformly over the circumference. Blades were placed along the entire height of the chamber with the
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angle of inclination to the radius equal to 79o (practically tangentially). The velocity and pressure fields and the flow
rates were measured at an inlet pressure of 0.142 MPa.

A comparison with the data of this study showed that the ratio of the calculated flow rate to the experimental
one is 0.96. Figure 3 presents the distribution of static pressures, circumferential velocities, and boundary-layer thick-
nesses with respect to the chamber radius. The excess static pressure is based on the excess pressure on the radius
r1, and the boundary-layer thickness is referred to the half-height of the chamber. The pressure and velocity data are
in favorable agreement. The measured velocity distribution near the outlet orifice turned out to be a function of the
axial coordinate. The spread in the values of the function is bounded by vertical segments (curve 2). The agreement
for the boundary-layer thickness is of a qualitative character, which may probably be in part attributed to the difficul-
ties of the experimental determination of the boundary layer.

Fig. 2. Rate of flow of air as a function of the excess pressure at the chamber
inlet: 1) theoretical dependence with account for the hydraulic jump; 2) same,
with the jump disregarded; dots stand for experimental data. G, kg/min; p0,
MPa.

Fig. 3. Distributions of the static pressure p ⁄ p0 (1), the circumferential velocity
v (3), and the boundary-layer thickness δ_ (2) along the chamber radius x:
curves show calculated results and dots represent experimental data [5].

Fig. 4. Distributions of the static pressure p ⁄ p0 along the chamber radius x:
1) r2 = 0.0057 and p(r1) = 0.36, 2) 0.01 and 0.284, 3) 0.014 m and 0.22
MPa; curves represent results calculated at λ = 70, and dots show experimen-
tal data [6].
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In [6], an air flow (20oC) has been investigated in a chamber with a single outlet at r1 = 0.045 m, three val-
ues r2 = 0.0057, 0.01, and 0.014 m, and h = 0.0125 m. The guiding apparatus consisted of four tubes with a diameter
of 0.004 m, arranged uniformly over the circumference in the middle of the side wall. Tubes were positioned tangen-
tially. The inlet pressures and the pressure distribution along the radius are known, and data as to the flow rate and
the parameter λ are absent.

Selecting the value of λ by the criterion of closer agreement of the calculation with the experimental data on
the pressure distribution along the radius for a chamber with r2 = 0.0057 m, we obtain favorable agreement between
experimental and calculated values for all r2 (Fig. 4). In Fig. 4, the excess static pressure is based on the excess pres-
sure on the radius r1 (the absolute p(r1) is given in the figure captions).

The calculation shows that the dimensionless pressure distribution along the chamber radius is independent of
the pressure at the inlet to the chamber. An example is presented in Table 1 (the chamber [6] has r1 = 0.045 m, r2
= 0.0057 m, and h = 0.025 m, and the subscripts refer to the absolute inlet pressures: a) 0.36 MPa, b) 0.26 MPa, and
c) 0.16 MPa). This property is known from experiments [6, 7].

The proposed model satisfactorily describes the flow of a compressible liquid in a short vortex chamber and
can be recommended for engineering applications.

NOTATION

f and g, functions specifying velocity profiles in the boundary layer; G, mass rate of flow of a liquid through
the chamber, kg/sec; h, chamber height, m; p, static pressure at a current radius measured with respect to the pressure
at the chamber outlet, Pa; Q, volumetric rate of flow of a liquid, m3/sec; r, running radius, m; u, v, and w, radial,
circumferential, and axial velocities of a liquid, m/sec; U, dimensionless radial velocity; x = 1 − r ⁄ r1; y, axial coordi-
nate, m; Γ, circulation, m2/sec; δ, boundary-layer thickness, m; λ, parameter of the flow swirling; ν, kinematic viscos-
ity of a liquid, m2/sec; ξ, dimensionless radius of the vortex; ρ, density, kg/m3; τ, shearing stress, Pa. Subscripts and
superscripts: 0 and 1, on the chamber radius; 2, on the radius of the outlet orifice; δ, on the external boundary of the
boundary layer; a, at the chamber outlet (the atmosphere); r, in the radial direction; t, in the circumferential direction;
s, secondary radial flow; v, on the vortex radius; *, on the radius starting from which the entire radial flow passes
through the end boundary layers; ′, derivative; underbar, dimensionless quantities.
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TABLE 1. Distribution of Dimensionless Pressure along the Chamber Radius

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.873

pa 1 1 0.99 0.98 0.97 0.95 0.92 0.86 0.72 0.42

pb 1 0.99 0.99 0.98 0.96 0.94 0.91 0.85 0.71 0.41

pc 1 0.99 0.99 0.98 0.96 0.95 0.92 0.86 0.72 0.41
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